Appendix D - Transmission System Design Summary

Pipeline Run No.	Description	Nominal Diameter (mm)	Approx. Length (km)	Design Flow (kSCMH)	Design Pressure (bar)	Design Temperature (C)	
2	Derryhale AGI - Dungannon AGI	250	28	48	85	7	0
3	Dungannon AGI - Cookstown AGI	150	17	13	85	7	0
4	Dungannon AGI - Omagh AGI	250	38	23	85	7	0
5	Omagh AGI - Enniskillen AGI	200	35	12	85	7	0
6	Enniskillen AGI - Derrylin AGI	200	23	6	85	7	0
7	North-West Pipeline - Strabane AGI	150	28	7.5	85	7	0

Compression Requirements

At this time it is not possible to predict what the operational requirements of the network will be in Year 9 (2020) or if the minimum operating will remain as low as 35bar. However, to establish an order of magnitude as to the level of Capital Expenditure and Operational expenditure that may be required should this inlet pressure to the proposed network remain the following was considered:

- Maximum Flow Rate: 50 KSCMH
- Minimum Inlet Pressure: 35bar
- Minimum Outlet Pressure: 50bar
- Compression Energy Required: 500 kW
- Efficiency: 60%
- Power Required: 850 kW

In order to provide the required compression associated with the flow in the proposed network 2No 1MW compressors together with associated equipment will be required. The estimated capital cost being circa $£ 8$ Million +/- 20% with an annual operational cost (including gas usage) of approximately $£ 450 \mathrm{~K}-£ 500 \mathrm{~K}$.

Appendix D - Transmission System Design

Run No.: 5 Description: Omagh AGI to Enniskillen AGI								
Inlet pressure Load Pipe friction factor Pipeline length Gas absolute temperature Specific Gravity Pipeline diameter Pipeline wall thickness Outlet pressure Pressure Drop		$=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	37 bar gauge = $12,000 \mathrm{SCMH}=$ 0.0140 $35 \mathrm{~km}=$ 278 Deg K = 0.6392 $219.1 \mathrm{~mm}=$ 8.18 mm 35 bar gauge 2.74 bar	$\begin{array}{r} 3,749,371 \quad \mathrm{~N} / \mathrm{m}^{2} \\ 0.09 \mathrm{~m}^{3} / \mathrm{s} \\ 35,000 \mathrm{~m} \\ 5 \mathrm{C} \\ 200 \mathrm{NB} \\ 3,475,859 \mathrm{~N} / \mathrm{m}^{2} \end{array}$	Velocity $\mathrm{Q}=$ $0.086 \mathrm{~m}^{3} / \mathrm{s}$ $\mathrm{A}=$ 0.032 Giving, $\mathrm{v}=$ $2.66 \mathrm{~m} / \mathrm{s}$ Sizing pipe based on $11 \mathrm{~m} / \mathrm{s}:$ $Q=$ $0.09 \mathrm{~m}^{3} / \mathrm{s}$ $\mathrm{V}=$ $11 \mathrm{~m} / \mathrm{s}$ $\mathrm{A}=$ $0.008 \mathrm{~m}^{2}$ giving, $d=$ 0.0997 m	Wall Thickness (minimum required) $\mathrm{P}=$ 37.49 bar gauge $\mathrm{D}=$ 219.1 mm $\mathrm{f}=$ $0.72(0.3$ type S or 0.72 type R$)$ Grade $=$ B giving $\mathrm{s}=$ $245 \mathrm{~N} / \mathrm{mm}^{2}$ Q Finally $\mathrm{t}=$ $\mathbf{2 . 3 3 \mathrm { mm }}$ therefore WT used is $\mathbf{O K}$ Actual Design Factor: 0.20	3. Location classification to determine f (design factor) $\mathrm{R}=$ rural areas, $</=2.5$ persons $/$ hectare $=2.47$ acres $S=$ intermediate area, >2.5 persons/hectare but not all T type conditions $\mathrm{T}=\mathrm{a}$) high population density b) ay multiple storey buildings c) dense traffic d) numerous underground services R/S/T Classification based on above \& from mapping/aerials?	4. Proximity Requirements (determined from Design Factor f) Design Factor 0.72 Design Pressure 85 Proximity requirements: $\mathbf{2 1}$ metres
Inlet pressure Load Pipe friction factor Pipeline length Gas absolute temperature Specific Gravity Pipeline diameter Pipeline wall thickness Outlet pressure Pressure Drop		$=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	35 bar gauge $=$ $6,000 \mathrm{SCMH}=$ 0.0150 $22 \mathrm{~km}=$ $278 \mathrm{Deg} \mathrm{K}=$ 0.6392 $168.3 \mathrm{~mm}=$ 7.11 mm 33 bar gauge 1.94 bar	$\begin{gathered} 3,475,859 \mathrm{~N} / \mathrm{m}^{2} \\ 0.05 \mathrm{~m}^{3} / \mathrm{s} \\ 22,000 \mathrm{~m} \\ 5 \mathrm{C} \\ 150 \mathrm{NB} \\ 3,281,653 \mathrm{~N} / \mathrm{m}^{2} \\ 6 \% \text { pressure drop } \end{gathered}$	Velocity $\mathrm{Q}=$ $0.046 \mathrm{~m}^{3} / \mathrm{s}$ $\mathrm{A}=$ 0.019 Giving, $\mathrm{v}=$ $2.48 \mathrm{~m} / \mathrm{s}$ Sizing pipe based on $1 \mathrm{tms} / \mathrm{s}:$ $Q=$ $0.05 \mathrm{~m}^{3} / \mathrm{s}$ $\mathrm{V}=$ $11 \mathrm{~m} / \mathrm{s}$ $\mathrm{A}=$ $0.000 \mathrm{~m}^{2}$ giving, $d=$ 0.0732 m		3. Location classification to determine f (design factor) $\mathrm{R}=$ rural areas, $</=2.5$ persons $/$ hectare $=2.47$ acres $\mathrm{S}=$ intermediate area, >2.5 persons/hectare but not all T type conditions $\mathrm{T}=$ a) high population density b) ay multiple storey buildings c) dense traffic d) numerous underground services R/S/T Classification based on above \& from mapping/aerials?	4. Proximity Requirements (determined from Design Factor f) Design Factor 0.72 Design Pressure 85 Proximity requirements: $\mathbf{2 1}$ metres
Inlet pressure Load Pipe friction factor Pipeline length Gas absolute temperature Specific Gravity Pipeline diameter Pipeline wall thickness Outlet pressure Pressure Drop		$=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	50 bar gauge $=$ $7,500 \mathrm{SCMH}=$ 0.0150 $28 \mathrm{~km}=$ $287 \mathrm{Deg}=$ 0.6392 $168.3 \mathrm{~mm}=$ 7.11 mm 47 bar gauge 2.68 bar	$5,000,000 \mathrm{~N} / \mathrm{m}^{2}$ $0.04 \mathrm{~m}^{3} / \mathrm{s}$ $28,000 \mathrm{~m}$ 5 C 150 NB 4,731,829 $\mathrm{N} / \mathrm{m}^{2}$ 5\% pressure drop		Wall Thickness (minimum required) $\mathrm{P}=$ 50.00 bar gauge $\mathrm{D}=$ 168.3 mm $\mathrm{f}=$ $0.72(0.3$ type S or 0.72 type R$)$ Grade $=$ B giving $\mathrm{s}=$ $245 \mathrm{~N} / \mathrm{mm}^{2}$ \& Finally $\mathrm{t}=$ $\mathbf{2 . 3 9 \mathrm { mm }}$ therefore WT used is $\mathbf{O K}$ Actual Design Factor: 0.24	3. Location classification to determine f (design factor) $\mathrm{R}=$ rural areas, $</=2.5$ persons $/$ hectare $=2.47$ acres $\mathrm{S}=$ intermediate area, >2.5 persons/hectare but not all T type conditions $T=a)$ high population density b) ay multiple storey buildings c) dense traffic d) numerous underground services R/S/T Classification based on above \& from mapping/aerials?	4. Proximity Requirements (determined from Design Factor f) Design Factor 0.72 Design Pressure 85 Proximity requirements: 21 metres

