

# MEDIUM TERM PLAN FAQ AND CONSTRAINTS ANALYSIS

# **NOVEMBER 2012**

<This page is intentionally left blank>

# TAMNAMORE FAQ AND CONSTRAINTS ANALYSIS

**VERSION CONTROL** 

| DOCUMENT VERSION | 1.3                            |
|------------------|--------------------------------|
| DATE OF ISSUE    | 21 <sup>ST</sup> NOVEMBER 2012 |
| AUTHOR(s)        | MICHAEL McCLURE                |
| APPROVER(s)      | RAYMOND SKILLEN                |

# TAMNAMORE FAQ AND CONSTRAINTS ANALYSIS

## **DOCUMENT HISTORY**

| VERSION | DETAILS                                                        |  |  |  |
|---------|----------------------------------------------------------------|--|--|--|
| 1.0     | Initial Version                                                |  |  |  |
| 1.1     | Executive Summary, Introduction, Methodology sections modified |  |  |  |
| 1.2     | Assumptions sections modified                                  |  |  |  |
| 1.3     | Final Version                                                  |  |  |  |
|         |                                                                |  |  |  |
|         |                                                                |  |  |  |

#### DISCLAIMER

SONI, the Transmission System Operator (TSO) for Northern Ireland, makes no warranties or representations of any kind with respect of this document, including, without limitation, its quality, accuracy and completeness. The TSO does not accept liability for any loss or damage arising from the use of this document or any reliance on the information it contains. Use of this document and the information it contains is at the user's sole risk. In addition, the TSO strongly recommends that any party wishing to make a decision based on the content of this document should consult the TSO in advance.

# CONTENTS

| E | XECU | TIVE | SUMMARY                              | . 5        |
|---|------|------|--------------------------------------|------------|
| 1 | IN   | TRO  |                                      | . 8        |
|   | 1.1  | 001  |                                      | 8          |
|   |      | 001  |                                      |            |
| 2 | AS   | SUM  | 1PTIONS                              | 9          |
| _ | 2.1  | DEN  | /AND FORECAST                        | 9          |
|   | 2.2  | GEN  |                                      | 9          |
|   | 2.2  | 2.1  | CONVENTIONAL GENERATION              | 9          |
|   | 2.2  | 2.2  | RENEWABLE GENERATION                 | 10         |
|   | 2.3  | INT  | ERCONNECTION                         | 11         |
|   | 2.3  | 8.1  | A.C. INTERCONNECTION                 | 11         |
|   | 2.3  | 3.2  | TRANSFER CAPACITY BETWEEN NI AND ROI | 11         |
|   | 2.3  | 3.3  | D.C. INTERCONNECTION                 | 12         |
|   | 2.4  | NET  | WORK REINFORCEMENTS                  | 12         |
| 3 | Μ    | ЕТНО | DDOLOGY                              | 13         |
|   | 3.1  | FAQ  | CALCULATION                          | 13         |
|   | 3.2  | CON  | STRAINTS CALCULATION                 | 15         |
|   |      |      |                                      |            |
| 4 | FA   | Q-N  | IO REINFORCEMENT                     | 17         |
|   | 4.1  | MA   | Ρ                                    | 17         |
|   | 4.2  | FIRM | M GENERATION                         | 17         |
|   | 4.3  | POV  | VER FLOWS ON 110KV CIRCUITS          | 18         |
|   | 4.3  | 8.1  | COLERAINE - KELLS CORRIDOR           | 18         |
|   | 4.3  | 3.2  | OMAGH - DUNGANNON CORRIDOR           | 18         |
| 5 | FA   | О- К | ELLS-COLERAINE UPRATE ONLY           | 19         |
| - | 5.1  | MAI  | Ρ                                    | 19         |
|   | 5.2  | FIRM | VI GENERATION                        | 19         |
|   | 5.3  | POV  | VER FLOWS ON 110KV CIRCUITS          | 20         |
|   | 5.3  | 8.1  | COLERAINE - KELLS CORRIDOR           | 20         |
|   | 5.3  | 3.2  | OMAGH - DUNGANNON CORRIDOR           | 20         |
| 6 | F۵   | 0- 0 | MAGH-DUNGANNON THIRD CIRCUIT ONLY    | <b>7</b> 1 |
|   | 61   |      |                                      | <br>21     |
|   | 6.2  | FIRM | M GENERATION                         | 21<br>21   |
|   | 6 3  |      | NER FLOWS ON 110KV CIRCUITS          | 21<br>22   |
|   | 6.5  | 100  | COLERAINE - KELLS CORRIDOR           | 22         |
|   | 6.3  | 3.2  | OMAGH - DUNGANNON CORRIDOR           | 22         |
|   |      | _    |                                      |            |

| 7 FAQ- TAMNAMORE PHASE 2 ONLY                                      | 23    |
|--------------------------------------------------------------------|-------|
| 7.1 MAP                                                            | 23    |
| 7.2 FIRM GENERATION                                                | 23    |
| 7.3 POWER FLOWS ON 110KV CIRCUITS WITH DRUMNAKELLY CIRCUITS OPEN   | 24    |
| 7.3.1 COLERAINE - KELLS CORRIDOR                                   | 24    |
| 7.3.2 OMAGH - TAMNAMORE CORRIDOR                                   | 24    |
| 7.4 POWER FLOWS ON 110KV CIRCUITS WITH DRUMNAKELLY CIRCUITS CLOSED | 25    |
| 7.4.1 COLERAINE - KELLS CORRIDOR                                   | 25    |
| 7.4.2 OMAGH - TAMNAMORE CORRIDOR                                   | 25    |
|                                                                    |       |
| 8 FAQ- TAMNAMORE PHASE 2 AND KELLS-COLERAINE UPRATE                | 26    |
| 8.1 MAP                                                            | 26    |
| 8.2 FIRM GENERATION                                                | 26    |
| 8.3 POWER FLOWS ON 110KV CIRCUITS                                  | 27    |
| 8.3.1 COLERAINE - KELLS CORRIDOR                                   | 27    |
| 8.3.2 OMAGH - TAMNAMORE CORRIDOR                                   | 27    |
|                                                                    |       |
| 9 FAQ- TAMNAMORE PHASE 2 AND OMAGH-TAMNAMORE THIRD CIRCUIT         | 28    |
| 9.1 MAP                                                            | 28    |
| 9.2 FIRM GENERATION                                                | 28    |
| 9.3 POWER FLOWS ON 110KV CIRCUITS WITH DRUMNAKELLY CIRCUITS OPEN   | 29    |
| 9.3.1 COLERAINE - KELLS CORRIDOR                                   | 29    |
| 9.3.2 OMAGH - TAMNAMORE CORRIDOR                                   | 29    |
| 9.4 POWER FLOWS ON 110KV CIRCUITS WITH DRUMNAKELLY CIRCUITS CLOSED | 30    |
| 9.4.1 COLERAINE - KELLS CORRIDOR                                   | 30    |
| 9.4.2 OMAGH - TAMNAMORE CORRIDOR                                   | 30    |
|                                                                    |       |
| 10 FAQ- KELLS-COLERAINE UPRATE AND OMAGH-DUNGANNON THIRD CIRCU     | IT 31 |
| 10.1 MAP                                                           | 31    |
| 10.2 FIRM GENERATION                                               | 31    |
| 10.3 POWER FLOWS ON 110KV CIRCUITS                                 | 32    |
| 10.3.1 COLERAINE - KELLS CORRIDOR                                  | 32    |
| 10.3.2 OMAGH - DUNGANNON CORRIDOR                                  | 32    |
|                                                                    |       |
| 11 FAQ- ALL PROJECTS COMPLETE                                      | 33    |
| 11.1 MAP                                                           | 33    |
| 11.2 FIRM GENERATION                                               | 33    |
| 11.3 POWER FLOWS ON 110KV CIRCUITS                                 | 34    |
| 11.3.1 COLERAINE - KELLS CORRIDOR                                  | 34    |
| 11.3.2 OMAGH - TAMNAMORE CORRIDOR                                  | 34    |
|                                                                    |       |
| 12 REDUCTION OF FAQ RESULTS                                        | 35    |

| 13 CC | ONSTRAINTS                                     |  |
|-------|------------------------------------------------|--|
| 13.1  | NO REINFORCEMENTS                              |  |
| 13.2  | COLERAINE - KELLS UPRATE                       |  |
| 13.3  | COLERAINE - KELLS UPRATE AND TAMNAMORE PHASE 2 |  |
| 13.4  | ALL REINFORCEMENTS                             |  |
| 13.5  | NOTES                                          |  |
|       |                                                |  |
| 14 SU | JMMARY OF RESULTS                              |  |

# LIST OF TABLES

| TABLE S.1         | NORTH-WEST FAQ ASSOCIATED WITH MTP PROJECTS              | 5  |
|-------------------|----------------------------------------------------------|----|
| TABLE S.2         | CONSTRAINTS COSTS ASSOCIATED WITH MTP PROJECTS           | 6  |
| TABLE 2.1         | NI DEMAND FORECAST 2016                                  | 9  |
| TABLE 2.2         | NI CONVENTIONAL GENERATION 2016                          | 9  |
| TABLE 2.3         | NI RENEWABLE GENERATION 2016                             | 10 |
| TABLE 2.4         | NORTH-SOUTH TIE-LINE CAPACITIES                          | 11 |
| TABLE 2.5         | NORTH-SOUTH TOTAL TRANSFER CAPACITY                      | 11 |
| TABLE 2.6         | IMPORT AND EXPORT CAPACITIES ON THE MOYLE INTERCONNECTOR | 12 |
| TABLE 2.7         | NETWORK REINFORCEMENTS IN NORTHERN IRELAND               | 12 |
| TABLE 3.1         | CONTINGENCY ANALYSIS PERFORMED                           | 14 |
| <b>TABLE 12.1</b> | SUMMARY OF FAQ RESULTS                                   | 35 |
| <b>TABLE 13.1</b> | CONSTRAINTS COSTS- NO REINFORCEMENTS                     | 36 |
| TABLE 13.2        | CONSTRAINTS COSTS- ONE REINFORCEMENT                     | 36 |
| <b>TABLE 13.3</b> | CONSTRAINTS COSTS- TWO REINFORCEMENTS                    | 36 |
| TABLE 13.4        | CONSTRAINTS COSTS- ALL REINFORCEMENTS                    | 36 |
|                   |                                                          |    |

# LIST OF FIGURES

| FIGURE S.1  | COMPARISON OF FAQ AND CONSTRAINTS COSTS        | 7  |
|-------------|------------------------------------------------|----|
| FIGURE 3.1  | SIMPLIFIED METHODOLOGY                         |    |
| FIGURE 3.2  | SIMPLIFIED CONSTRAINTS SPREADSHEET CALCULATION | 15 |
| FIGURE 14.1 | COMPARISON OF FAQ AND CONSTRAINTS COSTS        |    |

# **EXECUTIVE SUMMARY**

#### BACKGROUND

Presently 450.9 MW of wind generation is connected in Northern Ireland (NI). A further 550 MW of renewable generation has received planning permission to connect in NI. The vast majority of this renewable generation in located in the North-West area of NI, where the transmission network is at its weakest. Northern Ireland Electricity (NIE) has proposed a series of developments to reinforce the transmission network in this area to accommodate a large proportion of this extra generation- collectively referred to as the Medium Term Plan (MTP).

SONI was requested on the 23<sup>rd</sup> August, by the Utility Regulator (UREGNI), to investigate the impact of the MTP on Firm Access Quantities (FAQ) and constraints costs for generation connecting in the North-West area. It was agreed that the studies were to include the 1000 MW of connected/proposed renewable generation, be carried out for the year 2016, and focus on the impacts of three specific projects:

- Tamnamore 275/110kV substation Phase 2
- Coleraine Kells 110k V circuit uprate
- Omagh Tamnamore 110kV third circuit

#### FAQ

Analysis was carried out to determine the impact on FAQ in the North-West area of the three projects described above. The methodology was based on the ITC study methodology described in the recent SONI Generator Connection Process consultation<sup>1</sup>. Analysis considered:

- The impact on FAQ with no reinforcements included,
- The impact on FAQ with any one reinforcement included,
- The impact on FAQ with any two reinforcements included,
- The impact on FAQ with all three reinforcements included.

This led to eight different studies being performed, and the subsequent analysis highlighted the inter-dependence of the three reinforcement options. The results are shown in table S.1 below. The coloured cells in table S.1 indicate which projects were included in each set of FAQ analyses.

<sup>&</sup>lt;sup>1</sup> <u>http://www.soni.ltd.uk/upload/Generator%20Connection%20Process%20Consultation%20Paper%20-</u> %20October%202011.pdf

# TAMNAMORE FAQ AND CONSTRAINTS

| REINFORCEMENT        | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| KELLS - COLERAINE    |     |     |     |     |     |     |     |     |
| OMAGH - TAMNAMORE 3  |     |     |     |     |     |     |     |     |
| TAMNAMORE PHASE 2    |     |     |     |     |     |     |     |     |
| NORTH WEST FAQ (MW)  | 383 | 443 | 424 | 403 | 530 | 458 | 477 | 701 |
|                      |     |     |     |     |     |     |     |     |
| INCREASE IN FAQ (MW) | 0   | 60  | 41  | 20  | 147 | 75  | 94  | 318 |



The results indicate that the level of FAQ in the North-West area increases modestly with the inclusion of one or two of the three MTP projects; however, there is a significant increase if all three are included.

## CONSTRAINTS

Following the FAQ analysis, it was decided to study the impact on constraints costs of the following network reinforcement options:

- No reinforcements included (Option A)
- The single reinforcement that provides the greatest increase in FAQ (Option B)
- The two reinforcements that provide the greatest increase in FAQ (option C)
- All three reinforcements (option D)

The studies were carried out on an hourly basis for the entire year of 2016, using a process based on the Generator Output Reduction methodology detailed in the SONI Generator Connection Process consultation. This study made use of three different yearly wind profiles, and then averaged the resulting yearly constraints costs. The final average annual costs are detailed in table S.2 below.

| OPTION | ANNUAL CONSTRAINTS COSTS |                   |                   |             |  |  |
|--------|--------------------------|-------------------|-------------------|-------------|--|--|
|        | 2008 WIND PROFILE        | 2009 WIND PROFILE | 2010 WIND PROFILE | AVERAGE     |  |  |
| A      | £13,431,651              | £7,157,509        | £9,999,896        | £10,196,352 |  |  |
| В      | £11,343,614              | £6,498,771        | £6,601,798        | £8,148,061  |  |  |
| С      | £7,704,581               | £3,805,337        | £4,582,725        | £5,346,214  |  |  |
| D      | £730,441                 | £96,442           | £206,129          | £344,337    |  |  |

 Table S.2: Constraints Costs Associated With MTP Projects

#### CONCLUSIONS

The graph in figure S.1 below compares the changes in FAQ and constraints costs of the four options studied. Option D, the inclusion of all three MTP projects, as expected provides the largest increase in FAQ in the North-West area, while also having the lowest associated constraints costs. The largest step increase in FAQ occurs when the third project is completed, providing an increase of at least 170 MW of FAQ.



#### FAQ AND CONSTRAINTS OF OPTIONS

Figure S.1: Comparison of FAQ and Constraints Costs

The results, both from the FAQ analysis and the constraints analysis, demonstrate that while individual projects on their own may deliver some benefit, all three projects need to occur if the proposed levels of renewable generation are to be accommodated, and constraints costs minimised.

The impact of the recent announcement by Crown Estates on the 10<sup>th</sup> October into the awarding of development rights for two 100 MW tidal generation sites off the North Antrim coast has not been factored into these studies. If this extra proposed generation was to be included, the constraints costs would likely increase.

The run-back scheme on Coolkeeragh CCGT has been assumed to operate correctly in the event of the loss of the 275 k V double circuit from Coolkeeragh to Magherafelt. This scheme, in effect, allows 100 MW of extra renewable generation to remain connected in the North West area under contingency situations. If this scheme was not operational at all times, the constraints costs would increase.

# **1** INTRODUCTION

The increasing penetration of renewable generation in Northern Ireland (NI) results in a greater potential for thermal overloads on key transmission circuits in the North-West (NW) region. This generally occurs when system loads are low, and renewable generation output is high, meaning that there is insufficient local load to absorb the renewable generation, and exports onto the transmission system are high as a result.

In the short term, the TSO has dealt with this problem by using Special Protection Schemes (SPS), or by constraining wind off. Given that there is 450.9 MW of renewable generation connected in NI, and a further 550 MW of renewable generation with planning permission and looking to connect in the short to medium term, the existing transmission network is likely to come under severe pressure over the next few years. Northern Ireland Electricity (NIE) has drawn up a Medium Term Plan (MTP), which involves both the upgrading of 110 kV circuits in the NW area, and the construction of additional circuits and substations, to ensure the transmission network is capable of accepting much of this proposed generation.

SONI has been asked by the Utility Regulator (UREGNI) assess the impact of three of these MTP projects on the FAQ and constraints costs of renewable generation, for the year 2016. The three specific projects are:

- The completion of Phase 2 of Tamnamore 275/110 kV substation
- The uprating of the Coleraine-Kells 110 kV circuit
- The construction of a third 110 kV circuit between Omagh and Tamnamore

This report analyses the FAQ delivered by these projects, and then assesses the potential constraints costs associated with 1000 MW of renewable generation on the system.

# **1.1 OUTLINE OF REPORT**

Section 2 contains details of the assumptions used in the FAQ and constraints analysis.

Section 3 provides details of both the FAQ and constraints calculations methodologies.

To assess the FAQ, it has been decided to test the transmission network with various combinations of the three MTP projects, ranging from none completed to all included. This results in eight different combinations of new infrastructure to be tested. **Sections 4-11** present the results of the FAQ calculations for these eight different combinations.

**Section 12** takes the results of the FAQ analysis, and reduces them to four different options to bring forward to the constraints analysis.

Section 13 presents the results of the constraints analysis.

Section 14 summarises the main findings of the report.

# 2 ASSUMPTIONS

## 2.1 DEMAND FORECAST

The demand forecast for the year 2016 was based on the realistic demand forecast used in the most recent All-Island Generation Capacity Statement (2012 - 2021). The forecast is displayed in table 2.1 below. The demand forecast is based on sent out terms, i.e., net of generator house load.

| YEAR | WINTER<br>MAX | AUTUMN<br>MAX | SUMMER<br>MAX | SUMMER<br>MIN |
|------|---------------|---------------|---------------|---------------|
| 2016 | 1833          | 1576          | 1444          | 527           |
|      |               |               |               |               |

Table 2.1: NI Demand Forecast 2016

# 2.2 GENERATION

#### **2.2.1 CONVENTIONAL GENERATION**

The total conventional plant available in NI in the year 2016 is detailed in table 2.2 below

| GENERATION PLANT | UNIT ID | 2016 |
|------------------|---------|------|
| BALLYLUMFORD     | GT7     | 58   |
|                  | GT8     | 58   |
|                  | CCGT 21 | 161  |
|                  | CCGT 22 | 161  |
|                  | CCGT 20 | 178  |
|                  | CCGT 10 | 100  |
| COOLKEERAGH      | CCGT    | 430  |
|                  | GT8     | 53   |
| KILROOT          | ST1     | 260  |
|                  | ST2     | 260  |
|                  | GT1     | 29   |
|                  | GT2     | 29   |
|                  | GT3     | 42   |
|                  | GT4     | 42   |

Table 2.2: NI Conventional Generation 2016

#### **2.2.2 RENEWABLE GENERATION**

|    | GENERATOR         | MEC (MW)     | LOCATION      |
|----|-------------------|--------------|---------------|
| 1  | RIGGED HILL       | 5            | COLERAINE     |
| 2  | CORKEY            | 5            | BALLYMENA     |
| 3  | ELLIOT'S HILL     | 5            | LARNE         |
| 4  | BESSEY BELL       | 5            | OMAGH         |
| 5  | OWENREAGH         | 5.5          | STRABANE      |
| 6  | LENDRUM'S BRIDGE  | 13.2         | OMAGH         |
| 7  | ALTAHULLION       | 26           | LIMAVADY      |
| 8  | TAPPAGHAN         | 19.5         | OMAGH         |
| 9  | SNUGBOROUGH       | 13.5         | AGHYOULE      |
| 10 | CALLAGHEEN        | 16.9         | ENNISKILLEN   |
| 11 | LOUGH HILL        | 7.8          | STRABANE      |
| 12 | BIN MOUNTAIN      | 9            | STRABANE      |
| 13 | WOLF BOG          | 10           | LARNE         |
| 14 | SLIEVE RUSHEN     | 54           | AGHYOULE      |
| 15 | ALTAHULLION 2     | 11.7         | LIMAVADY      |
| 16 | BESSEY BELL 2     | 9            | OMAGH         |
| 17 | OWENREAGH 2       | 5.1          | STRABANE      |
| 18 | GARVES            | 15           | COLERAINE     |
| 19 | GRUIG             | 25           | COLERAINE     |
| 20 |                   | 30           | OMAGH         |
| 21 | TAPPAGHAN 2       | 9            | OMAGH         |
| 22 | CROCKAGARRAN      | 17.5         | DUNGANNON     |
| 23 | HUNTER'S HILL     | 20           | OMAGH         |
| 24 | SCREGGAGH         | 20           | OMAGH         |
| 25 | CURRYFREE         | 15           | LISAGHMORE    |
| 26 |                   | 27.6         | SLIEVE KIRK   |
| 18 | CRIGHSHANE        | 32.2         | MAGHERAKEEL   |
| 19 |                   | 18.4         | MAGHERAKEEL   |
| 20 | SLIEVE DIVENA Z   | 20           | GURI          |
| 21 |                   | 10           | MAGHERAKEEL   |
| 22 |                   | 24           |               |
| 23 |                   | 22.5         | KILLYMALLAGHI |
| 24 |                   | 13.8         |               |
| 25 |                   | 7.5<br>12 F  |               |
| 20 |                   | 12.5         |               |
| 2/ |                   | 57.5<br>20.7 |               |
| 20 | CROCKDUN          | 20.7         | TREMOGE       |
| 20 |                   | 30           |               |
| 21 | DUNMORE           | 21           |               |
| 32 | INISHATIVE        | 13.8         | TREMOGE       |
| 22 |                   | 20.7         |               |
| 34 | CORNAVARROW       | 36           | DRUMOUIN      |
| 35 | SEEGRONAN         | 18           | MAGHERAKEEI   |
| 36 | MAYDOWN BIOMASS   | 15           | COOLKEERAGH   |
| 37 | DUNBEG            | 42           | CAM           |
| 38 | ORA MORE          | 15           | ENNISKILLEN   |
| 39 | CASTLECRAIG       | 25           | DRUMOUIN      |
| 40 | GLENCONWAY        | 20           | SLIEVF KIRK   |
| 41 | ESHMORE           | 9            | GORT          |
| 42 | BROCKAGHBOY       | 45           | BROCKAGHBOY   |
| 43 | CREAGH CONCRETE   | 6            | BALLYMENA     |
| 44 | BALLYREAGH. TEMPO | 2.5          | ENNISKILLEN   |
| 45 | MULLYNAVEAGH      | 2.6          | DRUMNAKELLY   |
| 46 | GLENBUCK 1        | 3            | MID ANTRIM    |
| 47 | GLENBUCK 2        | 6.9          | MIDANTRIM     |
| 48 | SHANTAVNY SCOTCH  | 14           | GORT          |
| 49 | CROCKABARAVALLY   | 6.9          | GORT          |
| 50 | CROCKBRACK        | 2.3          | TREMOGE       |
| 51 | TULLYNAGEER       | 12.5         | NEWRY         |
|    |                   | -            |               |
|    | TOTAL             | 999.1        |               |
| -  |                   |              |               |

999.1 Table 2.3: NI Renewable Generation 2016

# 2.3 INTERCONNECTION

#### **2.3.1 A.C. INTERCONNECTION**

The NI and RoI transmission systems are connected by a 275 kV double circuit tie line, between Tandragee in NI and Louth in RoI. It is planned that there will also be a 400 kV single circuit connection in place over the winter period of 2016/17, between Turleenan in NI and Woodland in RoI.

There are also two 110 kV single circuit connections, between Letterkenny and Strabane, and Corraclassy and Enniskillen. These provide support in the event of certain conditions, or an unexpected circuit outage. Phase Shifting Transformers (PSTs) are used on these circuits to control the power flow.

| IMPORT /EXPORT CAPACITY | kV  | 2016 |
|-------------------------|-----|------|
| TANDRAGEE-LOUTH         | 275 | 1420 |
| ENNISKILLEN-CORRACLASSY | 110 | 125  |
| STRABANE-LETTERKENNY    | 110 | 125  |

Table 2.4 below lists the capacities on all North-South tie-lines in 2016, in MVA.

**Table 2.4: North South Tie-Line Capacities** 

#### 2.3.2 TRANSFER CAPACITY BETWEEN NI AND ROI

Table 2.5 below lists the total transfer capacity, in MW, on all tie-lines between NI and Rol.

| TOTAL TRANSFER CAPACITY | 2016 |
|-------------------------|------|
| NORTH-SOUTH             | 330  |
| SOUTH - NORTH           | 260  |

Table 2.5: North South Total Transfer Capacity

The tie lines are normally operated in such a way that there is no exchange of reactive power between NI and RoI. This has been reflected in all studies carried out.

#### **2.3.3 D.C. INTERCONNECTION**

Currently, the only HVDC interconnection between NI and Great Britain (GB) is the Moyle interconnector, with a capacity of 500MW. Table 2.6 below lists the import and export limits on the Moyle interconnector used for the year 2016.

| IMPORT/EXPORT CAPACITY     | 2016 |
|----------------------------|------|
| IMPORT (WINTER)            | 450  |
| IMPORT (AUTUMN AND SUMMER) | 410  |
| EXPORT                     | 300  |

Table 2.6: Import and Export Capacities on the Moyle Interconnector

## 2.4 NETWORK REINFORCEMENTS

Table 2.7 below describes the network reinforcements assumed for all years up to 2016.

| NETWORK REINFORCEMENTS                                                  | YEAR |
|-------------------------------------------------------------------------|------|
| MAGHERAKEEL WIND FARM CLUSTER AND 110kV CIRCUIT                         | 2012 |
| OMAGH - DUNGANNON 110kV CIRCUITS 1 &2 UPRATE TO 186/191/193MVA          | 2012 |
| KILLYMALLAGHT WIND FARM CLUSTER                                         | 2012 |
| KELLS - COLERAINE 110kV CIRCUIT UPRATE TO 186/191/193MVA – PHASE 1      | 2013 |
| ENNISKILLEN – OMAGH 110kV DOUBLE CIRCUIT UPRATE TO 109/119/124 MVA      | 2013 |
| KELLS - COLERAINE 110kV CIRCUIT UPRATE TO 186/191/193MVA – PHASES 2 & 3 | 2014 |
| REACTIVE COMPENSATION AT CASTLEREAGH, COOLKEERAGH AND TANDRAGEE         | 2014 |
| TAMNAMORE 275/110kV SUBSTATION PHASE 2                                  | 2015 |
| OMAGH - TAMNAMORE 110kV CIRCUIT 3                                       | 2015 |
| GORT WIND FARM CLUSTER                                                  | 2015 |
| LIMAVADY WIND FARM CLUSTER                                              | 2015 |
| MID ANTRIM WIND FARM CLUSTER                                            | 2015 |
| TREMOGE WIND FARM CLUSTER                                               | 2015 |
| CAM WIND FARM CLUSTER                                                   | 2016 |

Table 2.7: Network Reinforcements in Northern Ireland

# 3 METHODOLOGY

## **3.1 FAQ CALCULATION**

The FAQ is calculated using the ITC study methodology described in the recent SONI Generator Connection Process consultation. The full methodology can be found in that document; a brief description is included in this report and demonstrated in the simplified diagram in figure 3.1 below.



Figure 3.1: Simplified ITC Methodology

At a very simplistic level, the ITC process looks at each generator in turn, based on a list of generators to be tested. The list is comprised by assessing the status of generators in the connection application process, and also their date of planning permission.

For each generator, the FAQ at the node of connection is assessed using rigorous contingency analysis, through use of PSS/E software. The process itself is run via an automation program already tested and used for transmission capability analysis in recent Transmission System Capacity Statements.

Table 3.1 below illustrates the contingency analysis performed for each scenario. The more probable contingencies are comprised of single contingency events (N-1), which covers the loss of any single item of generation or transmission equipment at any time. N-1 contingency analysis is carried out in each season. In winter, N-DC events are also analysed. This event examines the simultaneous loss of both 275kV circuits on a 275kV double circuit tower, effectively treating the loss of both circuits as an N-1 event.

| SEASON | CONTINGENCY ANALYSIS |
|--------|----------------------|
| WINTER | N-1 AND N-DC         |
| AUTUMN | N-1                  |
| SUMMER | N-1                  |

**Table 3.1: Contingency Analysis Performed** 

The loss of the Coolkeeragh-Magherafelt 275kV double circuit is also treated as a single N-1 event in both autumn and summer. This is an addition to the contingency analysis described in table 3.1 above, and is included because:

- The conductor is presently in a poor condition,
- The circuit runs across high ground and is exposed to poor weather conditions,
- The recent outage rate of this double circuit is much greater than what would normally be expected.

# **3.2 CONSTRAINTS CALCULATION**

The methodology used for the constraints calculations is the same as that described in the recent SONI Generator Connection Process consultation. A brief summary is provided below, along with an associated simplified diagram; the full detailed methodology can be found in the consultation document.



Figure 3.2: Simplified Constraints Spreadsheet Calculation

The worst case scenario in the North-West region is the loss of the Coolkeeragh-Magherafelt 275kV double circuit. In basic terms, the constraint model looks for the amount of pre-fault constraints that have to occur to prevent overloads on the transmission system in the event of the double circuit loss. The inputs to the model are discussed below.

#### DETERMINE ALLOWABLE WIND

Load flow studies are performed for a range of loads over summer, autumn and winter scenarios. These studies are used to identify how much renewable generation can be connected in the NW of NI before overloads occur under contingency conditions. The results of these studies are then plotted and correlated to determine a linear relationship between maximum renewable generation output and system load, for the three seasons. These transfer capacity equations are input into the constraints model to inform the half-hourly analysis.

#### HALF-HOURLY DEMAND PROFILE

A pre-recession demand profile from 2007 is used to determine the 2016 demand profile used in the constraints model. The 2007 demand profile is scaled up so that the peak demand meets that stated in section 2.1.

#### HALF-HOURLY WIND PROFILE

Three separate historic wind profiles are tested in the model, covering the years 2008, 2009 and 2010. This is to reflect the unpredictability of wind, and therefore allows a range of differing renewable generation outputs to be studied.

#### HALF-HOURLY CONVENTIONAL GENERATION DISPATCH

Conventional generation is dispatched in the model based on the most economic dispatch. Coolkeeragh CCGT is deemed to be must run. For these studies, we are only interested in constraints required in the North-West to prevent overloads following the loss of the Coolkeeragh-Magherafelt 275 kV double circuit. Therefore, Coolkeeragh CCGT is assumed to be dispatched at 160 MW as per the run-back scheme in place for the generator.

#### HALF-HOURLY SMP PROFILE

To provide a cost figure for any constrained MW, an SMP profile is used. This is based on the assumption that any MW constrained would be getting paid the SMP at that time. Therefore the constraint model looks at MW constrained for any half-hour, and applies the SMP from the profile for that corresponding half hour. The 2010 SMP profile is used in the constraint model.

#### CALCULATION

The constrained MW for the entire year, and their associated costs, are finally summated, and presented as single figures. The three different costs, based on the three different wind profiles used, are averaged to produce one final overall constraint cost. The resulting costs are provided in section 13.

# 4 FAQ- NO REINFORCEMENT

## 4.1 MAP



## 4.2 FIRM GENERATION

With none of the proposed reinforcements in place in 2016, the total amount of renewable generation that would be firm in the North West region is **383MW**. The power flow diagrams in section 2.3 indicate that for the loss of the Coolkeeragh-Magherafelt 275kV double circuit, and subsequent run-back of Coolkeeragh CCGT to 160MW, the 110kV circuits between Dungannon and Drumnakelly are overloaded beyond **383MW** of renewable generation in the North-West.

# 4.3 POWER FLOWS ON 110kV CIRCUITS

#### **4.3.1 COLERAINE - KELLS CORRIDOR**



#### 4.3.2 OMAGH - DUNGANNON CORRIDOR



# 5 FAQ- KELLS-COLERAINE UPRATE ONLY

## 5.1 MAP



# 5.2 FIRM GENERATION

With only the Kells-Coleraine 110kV circuit uprate in place in 2016, the total amount of renewable generation that would be firm in the North West region is **443MW**. The power flow diagrams in section 3.3 indicate that for the loss of the Coolkeeragh-Magherafelt 275kV double circuit, and subsequent run-back of Coolkeeragh CCGT to 160MW, the 110kV circuits between Dungannon and Drumnakelly are overloaded beyond **443MW** of renewable generation in the North-West.

# 5.3 POWER FLOWS ON 110kV CIRCUITS

#### **5.3.1 COLERAINE - KELLS CORRIDOR**



#### **5.3.2 OMAGH - DUNGANNON CORRIDOR**



# 6 FAQ- OMAGH-DUNGANNON THIRD CIRCUIT ONLY

## 6.1 MAP



## 6.2 FIRM GENERATION

With only the third Omagh-Dunagnnon110kV circuit in place in 2016, the total amount of renewable generation that would be firm in the North West region is **424MW**. The power flow diagrams in section 4.3 indicate that for the loss of the Coolkeeragh-Magherafelt 275kV double circuit, and subsequent run-back of Coolkeeragh CCGT to 160MW, the 110kV circuits between Dungannon and Drumnakelly and Coleraine and Kells are overloaded beyond **424MW** of renewable generation in the North-West.

# 6.3 POWER FLOWS ON 110kV CIRCUITS

#### **6.3.1 COLERAINE - KELLS CORRIDOR**



#### 6.3.2 OMAGH - DUNGANNON CORRIDOR



# 7 FAQ- TAMNAMORE PHASE 2 ONLY

# 7.1 MAP



# 7.2 FIRM GENERATION

With only Tamnamore Phase 2 completed in 2016, the total amount of renewable generation that would be firm in the North West region is **370MW**. The proposed configuration of Tamnamore Phase 2 includes running the two 110kV ciruits to Drumnakelly normally open. If these were closed, the total amount of firm renewable generation in the North West region is **403MW**. Power flows for both these scenarios are displayed in sections 5.3 and 5.4 respectively.

## 7.3 POWER FLOWS ON 110kV CIRCUITS WITH DRUMNAKELLY CIRCUITS OPEN

#### 7.3.1 COLERAINE - KELLS CORRIDOR



#### 7.3.2 OMAGH - TAMNAMORE CORRIDOR



# 7.4 POWER FLOWS ON 110kV CIRCUITS WITH DRUMNAKELLY CIRCUITS CLOSED

#### 7.4.1 COLERAINE - KELLS CORRIDOR



#### 7.4.2 OMAGH - TAMNAMORE CORRIDOR



# 8 FAQ- TAMNAMORE PHASE 2 AND KELLS-COLERAINE UPRATE

## 8.1 MAP



# 8.2 FIRM GENERATION

With Tamnamore Phase 2 and the Coleraine-Kells 110kV circuit uprate in place in 2016, the total amount of renewable generation that would be firm in the North West region is **530MW**. The power flow diagrams in section 6.3 indicate that for the loss of the Coolkeeragh-Magherafelt 275kV double circuit, and subsequent run-back of Coolkeeragh CCGT to 160MW, the 110kV circuits between Omagh and Tamnamore are overloaded beyond **530MW** of renewable generation in the North-West.

# 8.3 POWER FLOWS ON 110kV CIRCUITS

#### 8.3.1 COLERAINE - KELLS CORRIDOR



#### 8.3.2 OMAGH - TAMNAMORE CORRIDOR



# 9 FAQ- TAMNAMORE PHASE 2 AND OMAGH-TAMNAMORE THIRD CIRCUIT

## 9.1 MAP



# 9.2 FIRM GENERATION

With Tamnamore Phase 2 and the third Omagh-Tamnamore 110kV circuit complete in 2016, the total amount of renewable generation that would be firm in the North West region is **406MW**. The proposed configuration of Tamnamore Phase 2 includes running the two 110kV ciruits to Drumnakelly normally open. If these were closed, the total amount of firm renewable generation in the North West region is **458MW**. Power flows for both these scenarios are displayed in sections 7.3 and 7.4 respectively.

## 9.3 POWER FLOWS ON 110kV CIRCUITS WITH DRUMNAKELLY CIRCUITS OPEN

#### 9.3.1 COLERAINE - KELLS CORRIDOR



#### 9.3.2 OMAGH - TAMNAMORE CORRIDOR



# 9.4 POWER FLOWS ON 110kV CIRCUITS WITH DRUMNAKELLY CIRCUITS CLOSED

#### 9.4.1 COLERAINE - KELLS CORRIDOR



#### 9.4.2 OMAGH - TAMNAMORE CORRIDOR



# **10 FAQ- KELLS-COLERAINE UPRATE AND OMAGH-DUNGANNON THIRD CIRCUIT**

## 10.1 MAP



## **10.2 FIRM GENERATION**

With the third Omagh-Dunagnnon 110kV circuit and the Kells-Coleraine uprate in place in 2016, the total amount of renewable generation that would be firm in the North West region is **477MW**. The power flow diagrams in section 8.3 indicate that for the loss of the Coolkeeragh-Magherafelt 275kV double circuit, and subsequent run-back of Coolkeeragh CCGT to 160MW, the 110kV circuits between Dungannon and Drumnakelly are overloaded beyond **477MW** of renewable generation in the North-West.

# **10.3 POWER FLOWS ON 110kV CIRCUITS**

#### **10.3.1 COLERAINE - KELLS CORRIDOR**



#### **10.3.2 OMAGH - DUNGANNON CORRIDOR**



# **11 FAQ- ALL PROJECTS COMPLETE**

## **11.1 MAP**



#### **11.2 FIRM GENERATION**

With all reinforcements in place in 2016, the total amount of renewable generation that would be firm in the North West region is **701MW**. The power flow diagrams in section 9.3 indicate that for the loss of the Coolkeeragh-Magherafelt 275kV double circuit, and subsequent run-back of Coolkeeragh CCGT to 160MW, the 110kV circuit between Tremoge cluster and Tamnamore is overloaded beyond **701MW** of renewable generation in the North-West.

# **11.3 POWER FLOWS ON 110kV CIRCUITS**

#### **11.3.1 COLERAINE - KELLS CORRIDOR**



#### **11.3.2 OMAGH - TAMNAMORE CORRIDOR**



# **12 REDUCTION OF FAQ RESULTS**

| REINFORCEMENT       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---------------------|---|---|---|---|---|---|---|---|
| KELLS - COLERAINE   |   |   |   |   |   |   |   |   |
| OMAGH - TAMNAMORE 3 |   |   |   |   |   |   |   |   |
| TAMNAMORE PHASE 2   |   |   |   |   |   |   |   |   |
|                     |   |   |   |   |   |   |   |   |

| NORTH WEST FAQ (MW)                | 383 | 443 | 424 | 403 | 530 | 458 | 477 | 701 |
|------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Table 12.1: Summary of FAQ Results |     |     |     |     |     |     |     |     |

There is presently some **430MW** of renewable generation connected in the North West region. Presently, there is not enough transmission capacity to allow all of this generation to be physically firm, as can be seen from column 1 above. There is presently planning approval for in excess of a further **500MW** of renewable generation in the North West region, i.e. leading to a total of over **930MW** in the area.

Columns 2 - 4 show the impact on FAQ in the North West if just one of the three reinforcement projects was approved and completed by 2016. In all cases, the increase on the current FAQ is marginal, and wholly inadequate when considering the proposed new generation.

Columns 5 - 7 show the impact on FAQ if a combination of two of the three reinforcements were completed by 2016. Of the three options, the one with the greatest impact is a combination of Kells-Coleraine uprate and Tamnamore Phase 2, giving an increase in FAQ of 150 MW. This options removes the present constraints on the Kells-Coleraine and Dungannon-Drumnakelly corridors, however, the recently uprated circuits between Omagh and Dungannon quickly become fully loaded as a result.

Column 8 shows that the completion of all three projects allows a significant increase on the FAQ of the North West area of some 320 MW, an impact far in excess of that of any combination of one or two of the reinforcements.

From these results, it has been decided to perform constraint/curtailment analysis for 2016 on the following:

- If no reinforcements were included
- The best performing single reinforcement (Kells-Coleraine uprate)
- The best performing pair of reinforcements (Kells-Coleraine and Tamnamore Phase 2)
- All reinforcements included

# **13 CONSTRAINTS**

Constraints analysis has been performed using the same methodology as described in the recent SONI Generator Connection Process consultation. The critical contingency in the North-West region is the loss of the Coolkeeragh-Magherafelt 275kV double circuit. The analysis looks for the amount of pre-fault constraints that have to occur to prevent overloads on the transmission system in the event of the double circuit loss. Every hour of the year has been analysed, and each MW of energy constrained in the North-West region has been assigned a cost based on the corresponding SMP for that hour (taken from a 2010 SMP profile). The costs are then summated to provide a yearly total. Three different wind profiles have been used, and an averaged annual constraint cost based on the three different profiles is calculated. The results are presented below.

## **13.1 NO REINFORCEMENTS**

| VEAD | ANNUAL CONSTRAINTS COSTS |                   |                   |             |
|------|--------------------------|-------------------|-------------------|-------------|
| TEAK | 2008 WIND PROFILE        | 2009 WIND PROFILE | 2010 WIND PROFILE | AVERAGE     |
| 2016 | £13,431,651              | £7,157,509        | £9,999,896        | £10,196,352 |

Table 13.1: Constraints Costs- No Reinforcements

## **13.2 COLERAINE - KELLS UPRATE**

| VEAD | ANNUAL CONSTRAINTS COSTS |                   |                   |            |
|------|--------------------------|-------------------|-------------------|------------|
| YEAK | 2008 WIND PROFILE        | 2009 WIND PROFILE | 2010 WIND PROFILE | AVERAGE    |
| 2016 | £11,343,614              | £6,498,771        | £6,601,798        | £8,148,061 |

Table 13.2: Constraints Costs- One Reinforcement

# **13.3 COLERAINE - KELLS UPRATE AND TAMNAMORE PHASE 2**

| VEAD | ANNUAL CONSTRAINTS COSTS |                   |                   |            |
|------|--------------------------|-------------------|-------------------|------------|
| TEAK | 2008 WIND PROFILE        | 2009 WIND PROFILE | 2010 WIND PROFILE | AVERAGE    |
| 2016 | £7,704,581               | £3,805,337        | £4,582,725        | £5,346,214 |

Table 13.3: Constraints Costs- Two Reinforcements

## **13.4 ALL REINFORCEMENTS**

| VEAD | ANNUAL CONSTRAINTS COSTS |                   |                   |          |
|------|--------------------------|-------------------|-------------------|----------|
| YEAK | 2008 WIND PROFILE        | 2009 WIND PROFILE | 2010 WIND PROFILE | AVERAGE  |
| 2016 | £730,441                 | £96,442           | £206,129          | £344,337 |

Table 13.4: Constraints Costs- All Reinforcements

# **13.5 NOTES**

- As requested, only constraints costs have been calculated. The impact of curtailment on constraints costs has **not** been included in the analysis. Therefore the impacts of:
  - The dispatch of the Moyle interconnector,
  - The requirement to have 3 conventional machines dispatched at all times in NI,
  - The limits on North-South transfer,
  - The 50% all-island SNSP limits,

have not been taken into account. The study was carried out purely to check the impact on constraints in the North-West region of the Medium Term Plan projects.

- These studies do not include the cost benefits associated with the increased generation capacity, and the increased security of supply.
- The analysis has assumed that every MW of energy constrained receives a payment.
- The analysis has assumed that all 1000 MW of renewable generation has connected, regardless of what infrastructure has been delivered. Clearly if projects were not progressed, then it would not be viable for renewable generation to connect, and constraints costs would be lower; however, this would then impact on the ability to meet the government's 40% renewable energy target for 2020.
- The results have not been verified with a full all-island economic analysis using software such as PROMOD, however work is presently underway to develop a model in PROMOD to allow this type of analysis to be carried out.
- Coolkeeragh CCGT has been assumed as a must run unit- this is likely to be the case as it will be required for inertial support, voltage support and maintaining fault level in the region.
- The necessary dynamic reactive voltage support required to accommodate these levels of renewable generation is assumed to have been installed. However, it is recognised that wind farm power stations are not the sole driver for the installation for this voltage support.

# **14 SUMMARY OF RESULTS**

The results suggest that all three projects should be progressed to accommodate the present levels of renewable generation that have received planning permission. The three projects together deliver in the region of 700 MW of firm capacity in the North-West region, with little constraints costs. The graph in figure 14.1 below compares the changes in FAQ and constraints costs of the four options studied:

- No reinforcements included (Option A)
- The single reinforcement the provides the greatest increase in FAQ (Option B)
- The two reinforcements that provide the greatest increase in FAQ (option C)
- All three reinforcements (option D)



#### FAQ AND CONSTRAINTS OF OPTIONS

Figure 14.1: Comparison of FAQ and Constraints Costs

The graph reinforces, both from the FAQ analysis and the constraints analysis, that while individual projects on their own may deliver some benefit, all three projects need to occur if the proposed levels of renewable generation are to be accommodated.